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3. Quadratic Equations

3.1. Graphs of Quadratic Functions .

In Chapter 2 we looked at straight lines, the simplest type of graph. In this chapter
we will move on to quadratic functions, the graphs of which which may be regarded
as the next simplest type. Recall that the general equation of a straight line (apart
from vertical lines) is y = mx+ c, where m is the slope and c is the y-intercept. One
way of looking at this is that the line needs two numbers m and c (we sometimes
call these numbers parameters) to completely specify it. The general equation of a
quadratic curve is y = ax2 + bx + c, so we see that we need three parameters, a, b
and c to completely specify it. Note that we have to have a 6= 0 for otherwise the
equation is linear.

We will have to wait until Section 3.4 to be able to go from an equation to sketching
a graph but we will start off in this section by plotting some graphs and looking at
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some of the main features. The effects that a and c have on the graph are much
easier to explain then the effect that b has on the graph, so we will start out by
considering equations where b = 0. First, let us examine Figure 1.

(A) The graph of y = x2. (B) The graph of y = −x2.

Figure 1. The effect of changing a from positive to negative.

As you can see the graph of y = x2 (where a = 1, b = 0 and c = 0) is U-shaped and
passes through the origin. If we change a = 1 to a = −1 but keep b and c zero, then
we get the graph of y = −x2 which is an upside down U-shape, still passing through
the origin.

Remark 3.1.1. No matter what the values of b and c are, if a is positive then the
graph will always be U-shaped and if a is negative then the graph will always be
shaped like an upside down U. The width of the U will vary with a though and we
will examine this in Figures 3 and 4 below.

Remark 3.1.2. Note that all the graphs in this section have the same scale to aid
comparison.

Next let us fix a = 1 and b = 0 and see what effect changing c has on the graph.
This is shown in Figure 2.

In both cases the shape of the graph remains the same as in Figure 1A but when
c = 1 (Figure 2A) the graph has been shifted up by one unit and when c = −1
(Figure 2B) the graph has been shifted down by one unit.

Remark 3.1.3. In particular note that in both cases c gives the y-intercept. In
fact this remains true no matter what the values of a and b are. We can see this by
noting that when x = 0, ax2 + bx + c = a(0) + b(0) + c = c. That is, when x = 0,
y = c, so c is the y-intercept.

It is also the case that no matter what the values of a and b are, then increasing c by
a certain number moves the graph upwards by that number of units and decreasing
c by a certain number moves the graph downwards by that number of units. We
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(A) The graph of y = x2 + 1. (B) The graph of y = x2 − 1.

Figure 2. The effect of changing c.

can see this, since if a and b are held fixed, then changing c will change y by exactly
the same amount.

Next let us see what happens when we have different values of positive a; this is
shown in Figure 3.

(A) The graph of y = 4x2. (B) The graph of y =
1

4
x2.

Figure 3. The effect of changing a when a is positive.

We see in Figure 3A that if a is increased then the graph becomes steeper and we
see in Figure 3A that if a is decreased then the graph becomes shallower.

Remark 3.1.4. Note that this remains the case no matter what the values of b and
c are.

Finally let us do the same thing with a negative; this is shown in Figure 4.
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(A) The graph of y = −4x2. (B) The graph of y = −1

4
x2.

Figure 4. The effect of changing a when a is negative.

Here we see similar behaviour as when a was positive. When the magnitude of a is
increased then the graph becomes steeper and when the magnitude of a is decreased
then the graph becomes shallower.

I have prepared a GeoGebra worksheet which will enable you to change the values of
a, b and c using ‘sliders’ and see the result on the graph in real time. It can be found
at http://www.ucd.ie/msc/access/graphofaquadraticfunction/. I would recommend
that you have a play around with this worksheet since it makes it much easier to see
what happens when you can see the graph changing as you move the slider. Note
that as usual, you can always reset the graph to its starting position by clicking on
the icon in the top right hand corner of the worksheet.

3.2. Completing the Square and the Quadratic Formula.

As was the case with straight lines, we want to be able to sketch quadratic graphs
and solve quadratic equations. There are different methods we can use to do this.
For example, we can use the techniques of calculus to help us sketch quadratic graphs
(and indeed many other sorts of graphs as well). However we will not study this
method until the second trimester, and for the moment we will use the technique
known as completing the square. This has the advantage of enabling us to not only
sketch quadratic graphs but also to solve quadratic equations.

3.2.1. Completing the Square .

The idea behind the technique is to simplify the equation y = ax2 + bx + c by re-
writing it as y = dz2 + e where d and e are numbers and z is a new variable. In
general z will be x plus or minus a number. The advantage in writing the equation
in this form is that it helps us to sketch the graph of y = ax2 + bx+ c and also solve
the equation y = ax2 + bx + c = 0.
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Before we look at sketching graphs and solving equations, let us do a few examples
of writing quadratic expressions in what is known as completed square form.

Example 3.2.1. Write x2 + 2x + 2 in completed square form.
Here we have

x2 + 2x + 2 = [x2 + 2x] + 2 = [(x + 1)2 − 1] + 2 = (x + 1)2 + 1.

Note what we have done, we have taken the x2 + 2x part and have written it as a
square of x + 1 minus a constant. This constant is then subtracted from the 2 we
started with. Also note that the 1 in x+1 comes from half the coefficient of x in the
original expression, i.e., 2. Finally the constant −1 arises since (x+1)2 = x2+2x+1,
so that x2 + 2x = (x + 1)2 − 1. Another way of looking at this is that in writing
(x + 1)2, we have added 1 onto x2 + 2x, so to balance everything out, we have to
subtract it off again.

Also note that we have written x2 + 2x + 2 as dz2 + e, where d = 1, e = 1 and
z = x + 1.

Example 3.2.2. Write x2 − 3x + 5 in completed square form.
In this case

x2 − 3x + 5 = [x2 − 3x] + 5 =

[(
x− 3

2

)2

− 9

4

]
+ 5 =

(
x− 3

2

)2

+
11

4
.

Note here that the general procedure is the same as in Example 3.2.1. We first con-

sider just x2−3x and then write down

(
x− 3

2

)2

where −3

2
is half of the coefficient

of x in x2 − 3x. However this means we have added in

(
−3

2

)2

=
9

4
, so we have to

subtract it off again.

Warning 3.2.3. Note that

(
−3

2

)2

is positive, so we have to subtract
9

4
, not add

it.

Things become slightly more complicated when the coefficient of x2 is not 1.
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Example 3.2.4. Write 2x2 − 5x− 3 in completed square form.
In this case

2x2 − 5x− 3 = 2

{
x2 − 5

2
x− 3

2

}
= 2

{[
x2 − 5

2
x

]
− 3

2

}
= 2

{[(
x− 5

4

)2

− 25

16

]
− 3

2

}

= 2

{(
x− 5

4

)2

− 49

16

}

= 2

(
x− 5

4

)2

− 49

8
.

The main thing to note here is that we take the factor of 2 out at the start and
then proceed with what we have inside the curly brackets as we did in Examples
3.2.1 and 3.2.2. Note we could also leave the −3 alone and add it at the end but
this doesn’t make much difference to the difficulty of the calculation one way or the
other.

Example 3.2.5. Write −1

2
x2 +

1

3
x +

2

5
in completed square form.

In this case

−1

2
x2 +

1

3
x +

2

5
= −1

2

{
x2 − 2

3
x− 4

5

}
= −1

2

{[
x2 − 2

3
x

]
− 4

5

}
= −1

2

{[(
x− 1

3

)2

− 1

9

]
− 4

5

}

= −1

2

{(
x− 1

3

)2

− 41

45

}

= −1

2

(
x− 1

3

)2

+
41

90
.

Remark 3.2.6. As always in mathematics, when we have obtained our answer, it
is good practice to try and check it in some way. For these problems there is an
easy check; we just have to multiply out the completed square form and make sure
we get the original expression.

As I remarked at the start of this section, completing the square helps us to sketch
quadratic graphs and also solve quadratic equations. We will look at sketching
graphs in Section 3.4 but here we will concentrate on solving equations. In general
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we will want to solve equations of the form ax2 + bx + c = 0. Before tackling the
general case, we will do some examples.

Example 3.2.7. Solve the equation x2 − 4x + 3 = 0.
We will first complete the square on x2 − 4x + 3.

x2 − 4x + 3 = [x2 − 4x] + 3 = [(x− 2)2 − 4] + 3 = (x− 2)2 − 1.

Since x2 − 4x + 3 = (x − 2)2 − 1, we can rewrite the equation x2 − 4x + 3 = 0 as
(x − 2)2 − 1 = 0. We have now done all the hard work since this last equation is
easy to solve

(x− 2)2 − 1 = 0⇒ (x− 2)2 = 1⇒ x− 2 = ±1.

Now if x− 2 = −1 then x = 1 and if x− 2 = 1 then x = 3.
Thus the solutions of the equation are x = 1 and x = 3.

Remark 3.2.8. We should now go back and check that x = 1 and x = 3 are indeed
solutions of x2 − 4x + 3 = 0:

12 − 4(1) + 3 = 1− 4 + 3 = 0 and 32 − 4(3) + 3 = 9− 12 + 3 = 0.

Thus x = 1 and x = 3 are solutions of x2 − 4x + 3 = 0.

Example 3.2.9. Solve the equation x2 + 6x + 5 = 0.
We will first complete the square on x2 + 6x + 5.

x2 + 6x + 5 = [x2 + 6x] + 5 = [(x + 3)2 − 9] + 5 = (x + 3)2 − 4.

We can now rewrite the equation x2 + 6x + 5 = 0 as (x + 3)2 − 4 = 0.
This can then be solved as follows:

(x + 3)2 − 4 = 0⇒ (x + 3)2 = 4⇒ x + 3 = ±2.

Now if x + 3 = −2 then x = −5 and if x + 3 = 2 then x = −1.
Thus the solutions of the equation are x = −5 and x = −1.

Example 3.2.10. Solve the equation x2 + 6x + 9 = 0.
We will first complete the square on x2 + 6x + 9.

x2 + 6x + 9 = [x2 + 6x] + 9 = [(x + 3)2 − 9] + 9 = (x + 3)2.

We can now rewrite the equation x2 + 6x + 9 = 0 as (x + 3)2 = 0.
This can then be solved as follows:

(x + 3)2 = 0⇒ x + 3 = 0⇒ x = −3.

Thus the solution is x = −3.
Note that in contrast to the first two examples, this equation only has one solution.

So far all the solutions have been integers. Now let us do an example where the
solutions will involve square roots.
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Example 3.2.11. Solve the equation 2x2 − 4x + 1 = 0.
We will first complete the square on 2x2 − 4x + 1.

2x2 − 4x + 1 = 2

{
x2 − 2x +

1

2

}
= 2

{
[x2 − 2x] +

1

2

}
= 2

{
[(x− 1)2 − 1] +

1

2

}
= 2

{
(x− 1)2 − 1

2

}
= 2(x− 1)2 − 1.

We can now rewrite the equation 2x2 − 4x + 1 = 0 as 2(x− 1)2 − 1 = 0.
This can then be solved as follows:

2(x− 1)2 − 1 = 0⇒ 2(x− 1)2 = 1⇒ (x− 1)2 =
1

2
⇒ x− 1 = ±

√
1

2
= ±
√

2

2
.

Now if x− 1 = −
√

2

2
then x = 1−

√
2

2
and if x− 1 =

√
2

2
then x = 1 +

√
2

2
.

Thus the solutions of the equation are x = 1−
√

2

2
and x = 1 +

√
2

2
.

3.2.2. The Quadratic Formula .

For those of you who have met the quadratic formula before, the form of the above
solutions may ring a bell. In fact we have all the tools we need to derive the quadratic
formula and we will do now.

Theorem 3.2.12 (The Quadratic Formula). If a, b and c are constants with a 6= 0,

then the equation ax2 + bx + c = 0 has solutions x =
−b±

√
b2 − 4ac

2a
.
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Proof. We will first complete the square on ax2 + bx + c.

ax2 + bx + c = a

{
x2 +

b

a
x +

c

a

}
(here we need a 6= 0)

= a

{[
x2 +

b

a
x

]
+

c

a

}
= a

{[(
x +

b

2a

)2

− b2

4a2

]
+

c

a

}

= a

{(
x +

b

2a

)2

+
−b2 + 4ac

4a2

}

= a

{(
x +

b

2a

)2

− b2 − 4ac

4a2

}

= a

(
x +

b

2a

)2

− b2 − 4ac

4a
.(1)

We can now rewrite the equation ax2 + bx + c = 0 as a

(
x +

b

2a

)2

− b2 − 4ac

4a
= 0.

This can then be solved as follows:

a

(
x +

b

2a

)2

− b2 − 4ac

4a
= 0⇒ a

(
x +

b

2a

)2

=
b2 − 4ac

4a

⇒
(
x +

b

2a

)2

=
b2 − 4ac

4a2

⇒ x +
b

2a
= ±

√
b2 − 4ac

4a2

⇒ x +
b

2a
=
±
√
b2 − 4ac

2a

⇒ x =
−b±

√
b2 − 4ac

2a

�

Theorem 3.2.12 enables us to solve any quadratic equation. Here are a couple of
examples.

Example 3.2.13. Solve the equation 3x2 − 3x− 2 = 0.
In this case a = 3, b = −3 and c = −2. Hence the solutions of the equations are

x =
−b±

√
b2 − 4ac

2a
=
−(−3)±

√
(−3)2 − 4(3)(−2)

2(3)
=

3±
√

9 + 24

6
=

3±
√

33

6
.

Warning 3.2.14. Remember there is a minus sign before the b, so if b is negative,
−b will be positive. Also note that b2 can never be negative.
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Example 3.2.15. Solve the equation −4x2 + 2x + 3 = 0.
In this case a = −4, b = 2 and c = 3. Hence the solutions of the equations are

x =
−b±

√
b2 − 4ac

2a

=
−2±

√
22 − 4(−4)(3)

2(−4)

=
−2±

√
4 + 48

−8

=
2±
√

52

8

=
1±
√

13

4
.

3.3. Real and Complex Roots .

Some of you who have met quadratic equations before may be thinking ‘hang on
a minute, all the equations so far have real solutions, isn’t he cheating?’. If you
thought this then you would be correct. I have specially chosen all the equations
so far to have real numbers as their solutions. However this will not always be the
case. The problem occurs when b2 − 4ac in the quadratic formula is negative. If we
square any real number, we get a non-negative real number, so put another way, a
real number can’t be the square root of a negative number. So if b2− 4ac < 0, there
can be no real solutions of the equation ax2 + bx + c = 0.

The way around this problem is to introduce complex numbers. We will devote a
whole chapter to complex numbers in the second trimester but for the moment we
will just define what a complex number is and show that if we don’t have any real
solutions of a quadratic equation then we will always have two complex ones.

Definition 3.3.1 (Complex number). A complex number is a number of the form
a + bi where a and b are real numbers and i has the property that i2 = −1.

If b2− 4ac < 0, then in order to put the solutions we obtain from Theorem 3.2.12 in
the form a+ bi, we only have to know how to deal with the square roots of negative
numbers. Luckily Theorem 1.2.18 from Chapter 1 still holds in this case. So if x is
a positive number (so −x is negative) then

√
−x =

√
x(−1) =

√
x ·
√
−1 =

√
x · i.

Here are a couple of examples.
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Example 3.3.2. Solve the equation x2 + 2x + 2 = 0.
In this case a = 1, b = 2 and c = 2. Hence the solutions of the equations are

x =
−b±

√
b2 − 4ac

2a

=
−2±

√
22 − 4(1)(2)

2(1)

=
−2±

√
4− 8

2

=
−2±

√
−4

2

=
−2±

√
4i

2

=
−2± 2i

2
= −1± i.

Example 3.3.3. Solve the equation −3x2 + 3x− 4 = 0.
In this case a = −3, b = 3 and c = −4. Hence the solutions of the equations are

x =
−b±

√
b2 − 4ac

2a

=
−3±

√
32 − 4(−3)(−4)

2(−3)

=
−3±

√
9− 48

−6

=
−3±

√
−39

−6

=
−3±

√
39i

−6

=
1

2
±
√

39

6
i.

Remark 3.3.4. Before we finish this section, we will note that if a quadratic equa-
tion ax2 + bx + c = 0 has no real solutions then b2 − 4ac < 0, so that 4ac− b2 > 0.
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Hence the solutions are

x =
−b±

√
b2 − 4ac

2a

=
−b±

√
(4ac− b2)(−1)

2a

=
−b±

√
4ac− b2i

2a

= − b

2a
±
√

4ac− b2

2a
i.

Since 4ac − b2 > 0 this means that in this case there are two complex solutions.
Thus for a quadratic equation ax2 + bx+ c = 0 there are three different possibilities:

• If b2 − 4ac > 0 then there are two real solutions.
• If b2 − 4ac = 0 then there is one real solution.
• If b2 − 4ac < 0 then there are two complex solutions. These are said to

be in complex conjugate pairs but don’t worry about this too much at the
moment; we will return to study complex numbers in more detail in the
second trimester.

The number b2−4ac is called the discriminant of the equation, since it discriminates
between the different possibilities.

3.4. Sketching Quadratic Graphs .

In this section we will use the expertise we have gained in solving quadratic equations
to help us sketch quadratic graphs. However before we can proceed we need another
technique. When sketching quadratic graphs we need the following information:

(1) We need to know where the graph cuts the x-axis.
(2) We need to know where the graph cuts the y-axis.
(3) We need to know is it U-shaped or is it shaped like an upside down U.
(4) We need to know where the graph has its lowest point (if it is U-shaped) or

its highest point (if it is shaped like an upside down U).

Solving quadratic equations helps us with (1), since the points where the graph
of y = ax2 + bx + c cuts the x-axis are the points where y = 0, that is where
ax2+bx+c = 0. Note this means that if there are two real solutions of ax2+bx+c = 0,
then the graph cuts the x-axis in two places, if there is one real solution then the
graph cuts the x-axis in one place (it just touches the x-axis) and if there are no
real solutions, then the graph does not touch the x-axis.

Next, (2) is easy, since to find the y-coordinate of the point where the graph cuts
the y-axis, we simply substitute x = 0 into y = ax2 + bx+ c and obtain y = c. Item
(3) is also easy; if a > 0 the the graph is U-shaped and if a < 0 then it is shaped
like an upside down U.
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We still have to deal with (4) and it is this that we will look at now. The key is the
completed square form. In Equation (1) we showed that

(2) ax2 + bx + c = a

(
x +

b

2a

)2

− b2 − 4ac

4a
.

Now

(
x +

b

2a

)2

is always non-negative and equals zero when x +
b

2a
= 0, that

is when x = − b

2a
. If we examine Equation (2), this means that if a > 0 then

y = ax2 + bx + c is at is minimum when x = − b

2a
with this minimum being

−b2 − 4ac

4a
. Similarly if a < 0 then y = ax2 + bx + c is at is maximum when

x = − b

2a
with this maximum being −b2 − 4ac

4a
. So in either case the turning point

of the graph lies at

(
− b

2a
,−b2 − 4ac

4a

)
.

Remark 3.4.1. There is another way of finding the turning point using the tech-
niques of calculus but while we will start to study calculus in the first trimester, we
won’t look at finding turning points using calculus until the second trimester. This
will be a very valuable technique though, since it can be used to find the turning
points of a much larger class of graphs than just quadratic graphs.

We now have all the tools we need to sketch some graphs of quadratic function, so
let us do some examples.

Example 3.4.2. Sketch the graph of the function y = x2 − x− 2.
We will first find where the graph cuts the x-axis by solving the equation
y = x2 − x − 2 = 0. Using the quadratic formula with a = 1, b = −1 and c = −2,
we obtain

x =
−b±

√
b2 − 4ac

2a

=
−(−1)±

√
(−1)2 − 4(1)(−2)

2(1)

=
1±
√

1 + 8

2

=
1±
√

9

2

=
1± 3

2
.

Thus the graph cuts the x-axis when x = −1 and when x = 2.
Next, when x = 0, y = −2, so the graph cuts the y-axis when y = −2.
We also know the graph is U-shaped since a > 0.
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Finally, the turning point is given by(
− b

2a
,−b2 − 4ac

4a

)
=

(
− −1

2(1)
,−(−1)2 − 4(1)(−2)

4(1)

)
=

(
1

2
,−9

4

)
.

We now have enough information to
sketch the graph and I have shown this
in Figure 5. Note that I have not in-
cluded the grid lines or scale on the
axes. This is because a sketch is a sum-
mary of the main features and shape of
the graph (the x and y intercepts, the
turning point and whether it is shaped
like a U or an upside down U), it is
not a plot of the graph. If I was doing
the sketch by hand I would not have to
worry about calculating exact values of
any other points apart from the ones I
have already calculated.

Figure 5. A sketch of
the graph of the function
y = x2 − x− 2.

Example 3.4.3. Sketch the graph of the function y = −2x2 + 3x + 1.
We will first find where the graph cuts the x-axis by solving the equation
y = −2x2 + 3x + 1 = 0. Using the quadratic formula with a = −2, b = 3 and
c = 1, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−3±

√
32 − 4(−2)(1)

2(−2)

=
−3±

√
9 + 8

−4

=
−3±

√
17

−4

=
3

4
±
√

17

4
.

Thus the graph cuts the x-axis when x =
3

4
+

√
17

4
and when x =

3

4
−
√

17

4
.

Next, when x = 0, y = 1, so the graph cuts the y-axis when y = 1.
We also know the graph is shaped like an upside down U since a < 0.
Finally, the turning point is given by(

− b

2a
,−b2 − 4ac

4a

)
=

(
− 3

2(−2)
,−32 − 4(−2)(1)

4(−2)

)
=

(
3

4
,
17

8

)
.

We now have all the information we need and I have sketched the graph in Figure
6A below.
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Example 3.4.4. Sketch the graph of the function y = 3x2 + 3x + 1.
We will first find where the graph cuts the x-axis by solving the equation
y = 3x2 + 3x + 1 = 0. Using the quadratic formula with a = 3, b = 3 and
c = 1, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−3±

√
32 − 4(3)(1)

2(3)

=
−3±

√
9− 12

6

=
−3±

√
−3

6
.

At this point we can stop since the
√
−3 means that the equation 3x2 + 3x + 1 = 0

does not have any real solutions, it only has complex ones. This means that the
graph does not cut the x-axis.
Next, when x = 0, y = 1, so the graph cuts the y-axis when y = 1.
We also know the graph is U-shaped since a > 0.
Finally, the turning point is given by(

− b

2a
,−b2 − 4ac

4a

)
=

(
− 3

2(3)
,−32 − 4(3)(1)

4(3)

)
=

(
−1

2
,
1

4

)
.

We now have all the information we need and I have sketched the graph in Figure
6B.

(A) A sketch of the graph of the function
y = −2x2 + 3x+ 1.

(B) A sketch of the graph of the function
y = 3x2 + 3x+ 1.

Figure 6
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3.5. Factorizing Quadratic Expressions .

In the last section of this chapter we will look at factorizing quadratic expressions.
There are two ways to do this; firstly we can use the quadratic formula and secondly
we can do it ‘by inspection’.

Let us first do using the quadratic formula. In general what we want to do is to
express ax2 + bx + c as (dx + e)(fx + g). However it will be enough to express
ax2 + bx+ c as a(x+ e)(x+ g) since we can then split the a among the factors x+ e
and x + g as we want. However in order to use the quadratic formula, we have to
relate the problem of expressing ax2 + bx + c as a(x + e)(x + g) to the problem of
solving the equation ax2 + bx + c = 0.

Let us suppose that we have ax2 + bx + c = a(x + e)(x + g). Then ax2 + bx + c = 0
is equivalent to a(x + e)(x + g) = 0 (i.e. the solutions are the same). However if
a(x+ e)(x+ g) = 0 then, since a 6= 0, we must have either x+ e = 0 or x+ g = 0, so
that the solutions are x = −e and x = −g. So given the solutions of ax2 +bx+c = 0
we also know the values of −e and −g. As always, some examples will make things
clearer.

Example 3.5.1. Factorize x2 − 2x− 8.
We will first use the quadratic formula to solve the equation x2− 2x− 8 = 0. Since
a = 1, b = −2 and c = −8, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−(−2)±

√
(−2)2 − 4(1)(−8)

2(1)

=
2±
√

4 + 32

2

=
2±
√

36

2

=
2± 6

2
= 1± 3.

Thus x = −2 and x = 4 are the solutions.
Since a = 1 we can now write x2 − 2x− 8 = (x + 2)(x− 4).
Of course, at this stage it is a good idea to multiply out (x + 2)(x − 4) and check
we do in fact get x2 − 2x− 8.

Warning 3.5.2. Always remember that we have to change the signs of the solutions
of the equation ax2 + bx + c = 0 to get the numbers we put into the factorization.

Example 3.5.3. Factorize x2 − 6x + 9.
We will first use the quadratic formula to solve the equation x2 − 6x + 9 = 0. Since
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a = 1, b = −6 and c = 9, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−(−6)±

√
(−6)2 − 4(1)(9)

2(1)

=
6±
√

36− 36

2

=
6±
√

0

2
= 3.

Thus x = 3 is the only solution. In this case we say x = 3 is a repeated root and so
x2 − 6x + 9 = (x− 3)(x− 3) = (x− 3)2.

Example 3.5.4. Factorize 3x2 − 5x + 1.
Again we will first use the quadratic formula to solve the equation 3x2− 5x+ 1 = 0.
Since a = 3, b = −5 and c = 1, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−(−5)±

√
(−5)2 − 4(3)(1)

2(3)

=
5±
√

25− 12

6

=
5±
√

13

6
.

Thus x =
5−
√

13

6
and x =

5 +
√

13

6
are the solutions.

Since a = 3 we can now write 3x2 − 5x + 1 = 3

(
x− 5−

√
13

6

)(
x− 5 +

√
13

6

)
.

Of course, if we wanted to, we could bring the 3 inside one of the brackets. For

example 3x2 − 5x + 1 =

(
3x− 5−

√
13

2

)(
x− 5 +

√
13

6

)
.

Example 3.5.5. Factorize x2 + x + 8.
We will first use the quadratic formula to solve the equation x2 + x + 8 = 0. Since
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a = 1, b = 1 and c = 8, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−1±

√
12 − 4(1)(8)

2(1)

=
−1±

√
1− 32

2

=
−1±

√
−31

2

=
−1±

√
31i

2
.

Thus the solutions are complex in this case. Depending on the sort of mathematics
we are studying, we may or may not regard this as a factorization. In this course
we will say that x2 + x + 8 cannot be factorized.

Remark 3.5.6. If you are asked to sketch the graph of y = ax2 + bx+ c or factorize
ax2 + bx + c, then it can be a good idea to first calculate the discriminant b2 − 4ac.
If it turns out to be negative then we know that the graph of y = ax2 + bx + c does
not intersect the x-axis or that ax2 + bx + c cannot be factorized.

Finally we will look at factorization ‘by inspection’. This just means that we look
at ax2 + bx + c and decide that it factorizes as a(x + d)(x + f).

Note that you don’t have to use this method, since you can always use the quadratic
formula, but it can be quicker in simple cases, for example, when d and f are integers.
Even if d and f are integers, it can be hard to spot the factorization, so in an exam
situation it is best not to spend too much time on this method. If d and f involve
fractions, square roots or complex numbers, then it is usually almost impossible
to spot the factorization, even for me. I also find it difficult if a is any number
apart from one, so in these cases it is best to factor out the a, then perform the
factorization and then multiply it back in to one of the factors at the end.

So let us look at factorizing expressions of the form x2 + bx + c. If we want
x2 + bx + c = (x + d)(x + f) then we must have x2 + bx + c = x2 + (d + f)x + df .
Comparing the coefficients on either side of this equation, we see that we must have
d + f = b and df = c. That is we need to find numbers d and f whose sum is b and
whose product is c.

I think the best way to proceed is to look at df = c first and ONLY look for whole
number possibilities for d and f . To see how it works let us have a look at x2+x−12.
In this case we need −12 = df . Now if we are looking for whole number values of d
and f , then the possibilities are

(d, f) = (1,−12), (−1, 12), (2,−6), (−2, 6), (3,−4), (−3, 4).

There are the corresponding possibilities with d and f reversed, but we don’t need to
consider these since they give the same factorization. Now, we also need d + f = 1,
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and the only possibility from the above that works is (d, f) = (−3, 4). Thus the
required factorization is x2 + x− 12 = (x + (−3))(x + 4) = (x− 3)(x + 4).

Here are some more examples.

Example 3.5.7.

• x2 + 3x + 2 = (x + 1)(x + 2).
• x2 − x− 6 = (x + 2)(x− 3).
• x2 + 3x = x(x + 3).
• x2 − 6x + 8 = (x− 2)(x− 4).
• x2 − 8x + 16 = (x− 4)2.

Please don’t worry too much about this method. It is something that will get better
with practice but remember you can always use the quadratic formula if you want.

19


	3. Quadratic Equations
	3.1. Graphs of Quadratic Functions
	3.2. Completing the Square and the Quadratic Formula
	3.2.1. Completing the Square
	3.2.2. The Quadratic Formula

	3.3. Real and Complex Roots
	3.4. Sketching Quadratic Graphs
	3.5. Factorizing Quadratic Expressions


